Immunochemical analysis of lipopolysaccharides from free-living and endosymbiotic forms of Rhizobium leguminosarum.
نویسندگان
چکیده
Rhizobium leguminosarum B556 and 8002 differ only with respect to carrying symbiotic plasmids with specificity for Pisum or Phaseolus hosts, respectively. Protease-treated samples derived from free-living cultures of both strains revealed a ladder of lipopolysaccharide (LPS-1) bands after periodate-silver staining of sodium dodecyl sulfate-polyacrylamide gels. These bands were arranged as doublets. After Western (immuno-) blotting, all LPS-1 bands reacted with monoclonal antibody JIM 21, whereas monoclonal antibody MAC 57 reacted only with the upper (slower-migrating) band and monoclonal antibody MAC 114 reacted only with the lower band of each doublet pair. Preparations obtained from bacteroids of Pisum or Phaseolus nodules showed significant differences in the size distribution and antigenicity of LPS. In bacteroids from Phaseolus sp., JIM 21 and MAC 57 each stained a ladder of LPS-1 bands on sodium dodecyl sulfate-polyacrylamide gels which corresponded in mobility to the upper band of each doublet pair seen in free-living cultures. MAC 114 did not react with the LPS from Phaseolus sp.-derived bacteroids. In bacteroids from Pisum sp., only fast-migrating (lower-molecular-weight) forms of LPS-1 could be visualized on gels, but both upper and lower bands of each doublet were still present and could be stained by the appropriate monoclonal antibody, MAC 57 or MAC 114, respectively. Similarly, bacteroids from R. leguminosarum 3841, which nodulates Pisum species, differed with respect to the structure and antigenicity of their LPS-1 from bacteroids of a related strain, B625, which nodulates Phaseolus species. Physiological factors were investigated that could account for these differences between the structures of LPS-1 from free-living cultures of B556 and 8002 and that from bacteroids. The following modifications in growth conditions each tended to reduce the expression of MAC 114 antigen and enhance the expression of MAC 57 antigen: succinate rather than glucose as the carbon source; microaerobic (2.5%, vol/vol) oxygen concentrations; and acidic (pH 5 to 6) culture medium. When all three of these conditions were combined, the LPS-1 that resulted was very similar to that in bacteroids from Pisum nodules. However, it was not possible to reproduce the LPS-1 pattern observed for bacteroids from Phaseolus nodules, which maintained a ladder of LPS bands reacting with MAC 57 antibody.
منابع مشابه
Functional and expression analysis of the metal-inducible dmeRF system from Rhizobium leguminosarum bv. viciae.
A gene encoding a homolog to the cation diffusion facilitator protein DmeF from Cupriavidus metallidurans has been identified in the genome of Rhizobium leguminosarum UPM791. The R. leguminosarum dmeF gene is located downstream of an open reading frame (designated dmeR) encoding a protein homologous to the nickel- and cobalt-responsive transcriptional regulator RcnR from Escherichia coli. Analy...
متن کاملExpression of large plasmids in the endosymbiotic form of Rhizobium leguminosarum.
Isolated plasmid DNA from Rhizobium leguminosarum was hybridised with cellular RNA from broth-cultured bacteria and endosymbiotic bacteroids. From these hybridisation, experiments it is concluded that plasmid genes are strongly expressed in bacteroids and only weakly or not at all in bacteria. From the hybridisation of plasmid DNA with the cloned structural nif genes of Klebsiella pneumoniae it...
متن کاملBacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes.
BacA is an integral membrane protein, the mutation of which leads to increased resistance to the antimicrobial peptides bleomycin and Bac7(1-35) and a greater sensitivity to SDS and vancomycin in Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli, and Rhizobium etli. The growth of Rhizobium strains on dicarboxylates as a sole carbon source was impaired in bacA mutants but was ove...
متن کاملRhizobium leguminosarum hupE encodes a nickel transporter required for hydrogenase activity.
Synthesis of the hydrogen uptake (Hup) system in Rhizobium leguminosarum bv. viciae requires the function of an 18-gene cluster (hupSLCDEFGHIJK-hypABFCDEX). Among them, the hupE gene encodes a protein showing six transmembrane domains for which a potential role as a nickel permease has been proposed. In this paper, we further characterize the nickel transport capacity of HupE and that of the tr...
متن کاملGenetics and biotechnology of the H(2)-uptake [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae, a legume endosymbiotic bacterium.
A limited number of strains belonging to several genera of Rhizobiaceae are capable of expressing a hydrogenase system that allows partial or full recycling of hydrogen evolved by nitrogenase, thus increasing the energy efficiency of the nitrogen fixation process. This review is focused on the genetics and biotechnology of the hydrogenase system from Rhizobium leguminosarum bv. viciae, a freque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 172 4 شماره
صفحات -
تاریخ انتشار 1990